Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 273(14): 3358-69, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16803460

RESUMO

The 8.5 kDa chloroplast protein CP12 is essential for assembly of the phosphoribulokinase/glyceraldehyde-3-phosphate dehydrogenase (GAPDH) complex from Chlamydomonas reinhardtii. After reduction of this complex with thioredoxin, phosphoribulokinase is released but CP12 remains tightly associated with GAPDH and downregulates its NADPH-dependent activity. We show that only incubation with reduced thioredoxin and the GAPDH substrate 1,3-bisphosphoglycerate leads to dissociation of the GAPDH/CP12 complex. Consequently, a significant twofold increase in the NADPH-dependent activity of GAPDH was observed. 1,3-Bisphosphoglycerate or reduced thioredoxin alone weaken the association, causing a smaller increase in GAPDH activity. CP12 thus behaves as a negative regulator of GAPDH activity. A mutant lacking the C-terminal disulfide bridge is unable to interact with GAPDH, whereas absence of the N-terminal disulfide bridge does not prevent the association with GAPDH. Trypsin-protection experiments indicated that GAPDH may be also bound to the central alpha-helix of CP12 which includes residues at position 36 (D) and 39 (E). Mutants of CP12 (D36A, E39A and E39K) but not D36K, reconstituted the GAPDH/CP12 complex. Although the dissociation constants measured by surface plasmon resonance were 2.5-75-fold higher with these mutants than with wild-type CP12 and GAPDH, they remained low. For the D36K mutation, we calculated a 7 kcal.mol(-1) destabilizing effect, which may correspond to loss of the stabilizing effect of an ionic bond for the interaction between GAPDH and CP12. It thus suggests that electrostatic forces are responsible for the interaction between GAPDH and CP12.


Assuntos
Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/enzimologia , Cloroplastos/química , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Proteínas de Plantas/metabolismo , Animais , Sítios de Ligação , Cisteína/química , Ácidos Difosfoglicéricos/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/análise , Gliceraldeído-3-Fosfato Desidrogenases/química , Gliceraldeído-3-Fosfato Desidrogenases/genética , Técnicas In Vitro , Cinética , Modelos Moleculares , Peso Molecular , Mutação , Oxirredução , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool) , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Ligação Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Eletricidade Estática , Ressonância de Plasmônio de Superfície , Tiorredoxinas/farmacologia , Tripsina/farmacologia
2.
Rapid Commun Mass Spectrom ; 19(22): 3379-88, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16259044

RESUMO

The small chloroplast protein CP12 plays the role of a protein linker in the assembly process of a PRK/GAPDH/CP12 complex that is involved in CO2 assimilation in photosynthetic organisms. The redox state of CP12 regulates its role as a protein linker. Only the oxidized protein, with two disulfide bonds, is active in complex formation. Several observations indicating that CP12 might bind a metal ion led us to screen the binding of different metal ions on oxidized or reduced CP12 using non-covalent electrospray ionization mass spectrometry (ESI-MS) experiments. The oxidized protein bound specifically Cu2+ and Ni2+ (Kd of 26+/-1 microM and 11+/-1 microM, respectively); other cations such as Fe2+ and Zn2+ did not bind, while cations such as Cd2+ formed non-specific adducts to CP12. Similar results were obtained for metal ions on screening with the reduced CP12. Interestingly, the present results suggest that Cu2+ catalyzes the re-formation of the disulfide bonds of the reduced CP12, leading to recovery of the fully oxidized CP12 that is then able to bind a Cu2+ ion. Finally the high similarity between CP12 and copper chaperones from Arabidopsis thaliana, as judged by hydrophobic cluster analysis, provides additional evidence for the relevance of metal binding for the in vivo situation. The findings that CP12 is able to bind a metal ion, and that Cu2+ catalyzes the oxidation of the thiol groups of CP12, are new characteristics of this protein that may prove to be important in the regulation of the assembly process of the PRK/GAPDH/CP12 complex.


Assuntos
Cloroplastos/química , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Metais/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteína Quinase C/metabolismo , Animais , Chlamydomonas reinhardtii , Íons/química , Complexos Multiproteicos/metabolismo , Mutação Puntual , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...